资源类型

期刊论文 35

年份

2023 4

2022 2

2021 3

2020 7

2018 3

2017 2

2015 3

2014 1

2013 2

2012 1

2011 1

2010 2

2009 2

2007 1

展开 ︾

关键词

偶氮苯 1

分子开关 1

协同效应 1

双金属羟基氧化物 1

析氧反应 1

选择性吸附 1

铈掺杂介孔二氧化硅 1

高效脱附 1

高电流密度 1

展开 ︾

检索范围:

排序: 展示方式:

Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive

《化学科学与工程前沿(英文)》   页码 1623-1631 doi: 10.1007/s11705-022-2202-y

摘要: The number of active components and their dispersion degree are two key factors affecting the performance of adsorbents. Here, we report a simple but efficient strategy for dispersing active components by using a confined space, which is formed by mesoporous silica walls and templates in the as-prepared SBA-15 (AS). Such a confined space does not exist in the conventional support, calcined SBA-15, which does not contain a template. The Cu and Zn precursors were introduced to the confined space in the AS and were converted to CuO and ZnO during calcination, during which the template was also removed. The results show that up to 5 mmol·g–1 of CuO and ZnO can be well dispersed; however, severe aggregation of both oxides takes place in the sample derived from the calcined SBA-15 with the same loading. Confined space in the AS and the strong interactions caused by the abundant hydroxyl groups are responsible for the dispersion of CuO and ZnO. The bimetallic materials were employed for the adsorptive separation of propene and propane. The samples prepared from the as-prepared SBA-15 showed superior performance to their counterparts from the calcined SBA-15 in terms of both adsorption capacity of propene and selectivity for propene/propane.

关键词: bimetallic adsorbents     confined space     mesoporous silica     propene/propane separation    

Low-cost adsorbents for urban stormwater pollution control

Yang Deng

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1262-9

摘要: Abstract • Various low-cost adsorbents are studied for capturing urban stormwater pollutants. • Adsorbents are selected based on both pollutant adsorption and unexpected leaching. • Application modes of adsorbents influence their utilization efficacy in practice. Stormwater represents a major non-point pollution source at an urban environment. To improve the treatment efficacy of stormwater infrastructure, low-cost adsorbents have increasingly gained attention over the past decades. This article aims to briefly discuss several key aspects and principles for utilization of low-cost adsorbents for urban stormwater treatment. To determine whether a low-cost adsorbent is suitable for stormwater treatment, two aspects should be carefully assessed, including: 1) its adsorption mechanisms and behaviors that can influence the binding stre.g.,h, adsorption kinetics, and treatment capacity; and 2) unwanted chemical leaching patterns that can affect the extent of water quality degradation. Furthermore, the application mode of an adsorbent in the system design influences the utilization efficiency. Adsorbents, after dosed to soil media in infrastructure, would eventually become ineffective after oversaturation. In contrast, standalone filters or innovative composite adsorbents (e.g., adsorbent-coated mulch chips) can enable a long-lasting adsorption due to periodic replacement with fresh adsorbents. The aforementioned principles play a key role in the success of urban stormwater treatment with low-cost adsorbents.

关键词: Urban stormwater     Runoff pollutants     Low-cost adsorbents     Adsorption     Chemical leaching    

Preparation and characterization of EVAL hollow fiber membrane adsorbents filled with cation exchange

Fengli ZHANG, Yuzhong ZHANG, Hong LI, Guangfen LI,

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 462-467 doi: 10.1007/s11705-009-0011-1

摘要: EVAL hollow fiber membrane adsorbents filled with powder D061-type cation exchange resin were prepared through dry-wet spinning process, using hydrophilic copolymer EVAL as the fiber substrate. The microstructures of the membrane adsorbents were observed, and the pure water fluxes, BSA rejection, and static adsorption capacities of membrane adsorbents for BSA were measured. The effect of the resin-filled content on membrane performance has been discussed. The results showed that EVAL hollow fiber membrane adsorbents filled with D061-type cation exchange resins had good adsorption capacity, and the adsorption capacity increased with the quantity of the resin-filled content. The static protein adsorption capacity was 77.14 mg BSA/g membrane adsorbents when D061 resin loading content was 65% at pH 4.5.

关键词: substrate     copolymer EVAL     exchange     EVAL hollow     resin-filled content    

Ni-Co bimetallic catalyst for CH

Xiaohong LI, Jun AI, Wenying LI, Dongxiong LI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 476-480 doi: 10.1007/s11705-010-0512-y

摘要: A co-precipitation method was employed to prepare Ni/Al O -ZrO , Co/Al O -ZrO and Ni-Co/Al O -ZrO catalysts. Their properties were characterized by N adsorption (BET), thermogravimetric analysis TGA , temperature-programmed reduction (TPR), temperature-programmed desorption (CO -TPD), and temperature-programmed surface reaction (CH -TPSR and CO -TPSR). Ni-Co/Al O -ZrO bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO adsorption sites (C+ CO = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH -CO -TPSR, there were 80.9% and 81.5% higher CH and CO conversion over Ni-Co/Al O -ZrO catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al O -ZrO catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.

关键词: Ni-Co bimetallic catalyst     composite support     CH4 reforming with CO2    

Composite adsorbents of CaCl

Huashan LI, Xianbiao BU, Lingbao WANG, Zhenneng LU, Weibin MA

《能源前沿(英文)》 2012年 第6卷 第4期   页码 356-360 doi: 10.1007/s11708-012-0207-9

摘要: Composite adsorbents of CaCl and sawdust prepared by carbonization for adsorption refrigeration with NH as refrigerant are tested, and the effects of carbonization temperature on the sorption capacity and rate are analyzed. The results show that the amount of pores in the sawdust of the composite adsorbents carbonized, apart from the content of CaCl , is the most dominant factor influencing the NH sorption on composite adsorbents. The optimum carbonization temperature is 700°C, which gives the maximal NH sorption capacity as high as 0.774 kg of NH per kg of the composite, and the specific cooling power is approximately between 338 and 869 W/kg with the cycle duration varying from 5 to 20 minutes. The present study demonstrates that the composite absorbent of CaCl and sawdust prepared by carbonization is more promising and competitive for adsorption refrigeration application.

关键词: adsorption refrigeration     composite adsorbent     calcium chloride     sawdust     carbonization    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG,Jian LU,Zhencheng XU,Yiliang HE,Bo ZHANG,Song JIN,Brian BOMAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 832-839 doi: 10.1007/s11783-015-0778-x

摘要: Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/Palladium bimetallic nanoparticles (nZVI/Pd) were synthesized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVI. Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 × higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZVI/Pd may be an effective tool for treating polybrominated diphenyl ethers (PBDEs) in water.

关键词: degradation     bimetallic nanoparticles     nanoscale zero-valent iron     polybrominated diphenyl ethers    

Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison

Kubra Ulucan-Altuntas, Eyup Debik

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1196-2

摘要: DDT undergoes dechlorination via Fe/Pd bimetallic nanoparticle. The oxidation effect of nZVI on DDT is greatly improved when Pd is dopped. The highest concentration to be treated under cancerogenesis limit was 110 mg/L. The dechlorination of DDT is more like to DDE via Fe/Pd but to DDD via nZVI. Degradation products concentrations are lowered via Fe/Pd when compared with nZVI. In this study, the bimetallic Fe/Pd nanoparticle was synthesized using the catalytic element palladium to increase the effect of nano zero valent iron (nZVI), in the light of the information obtained from our previous study, in which the nZVI synthesis method was modified. Dichlorodiphenyltrichloroethane (DDT), one of the most widely used persistent organic pollutant pesticides in the world, was investigated in terms of its degradation by Fe/Pd nanoparticles and the difference with nZVI was determined. During the study, the Fe/Pd concentration, initial DDT concentration, and contact time were selected as variables affecting the treatment. The highest possible initial DDT concentration for the treatment with Fe/Pd bimetallic nanoparticle was investigated to obtain the DDT effluent concentration below the carcinogenesis limit, 0.23 µg/L. The highest concentration that could be treated was found to be 109.95 mg/L with Fe/Pd. It was found that 44.3 min of contact time and 550 mg/L Fe/Pd concentration were needed to achieve this treatment.

关键词: Persistent organic pollutants     nZVI     Bimetallic nanoparticle     Organochlorine pesticides     DDT    

Beta-cyclodextrin adsorbents to remove water pollutants—a commentary

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1407-1423 doi: 10.1007/s11705-022-2146-2

摘要: Beta-cyclodextrin-based adsorbent is a promising adsorbent because it has unique characteristics and able to form host-guest complexes with various organic compounds. Adsorption using beta-cyclodextrin-based adsorbent has continuously improved by various preparation strategies and crosslinking agents. This commentary aims to highlight the preparation strategies, properties, and adsorption mechanisms of beta-cyclodextrin-based adsorbents. The adsorbents can be generally classified according to the preparation methods and display high adsorption capacity especially for dyes. Particularly, composite/nanocomposite beta-cyclodextrin-based adsorbents exhibit outstanding adsorption capacity even though the surface area is lower than that of porous and magnetic beta-cyclodextrin-based adsorbents. The beta-cyclodextrin/chitosan functionalized graphene oxide hydrogel with specific surface of 17.6 m2·g–1 yields an extraordinarily maximum adsorption capacity of 1499 mg·g–1 methylene blue, while beta-cyclodextrin/chitosan modified with iron(II, III) oxide nanoparticles displays a much greater maximum adsorption capacity at 2780 mg·g–1. The hydrophobic interaction, functional groups, hydrogen bonding, and electrostatic interaction govern the adsorption to a greater capacity. Although this commentary is not exhaustive, the preparation strategies and illustrated mechanisms provide useful insights into the adsorbent–adsorbate interactions, cost-effective analysis, challenges, and future directions of beta-cyclodextrin-based adsorbents in wastewater treatment.

关键词: beta-cyclodextrin adsorbent     adsorption     inclusion complex     mechanism     water pollutant     wastewater treatment    

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1962-1972 doi: 10.1007/s11705-023-2359-z

摘要: Within the “hydrogen chain”, the high-temperature water gas shift reaction represents a key step to improve the H2 yield and adjust the H2/COx ratio to fit the constraints of downstream processes. Despite the commercial application of the high-temperature water gas shift, novel catalysts characterized by higher intrinsic activity (especially at low temperatures), good thermal stability, and no chromium content are needed. In this work, we propose bimetallic iron-copper catalysts supported on ceria, characterized by low active phase content (iron oxide + copper oxide < 5 wt %). Fresh and used samples were characterized by inductively coupled plasma mass spectrometry, X-ray diffraction, nitrogen physisorption, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and temperature programmed reduction in hydrogen to relate physicochemical features and catalytic activity. The sample with iron/copper ≈ 1 and 4 wt % active phase content showed the best catalytic properties in terms of turnover frequency, no methane formation, and stability. Its unique properties were due to both strong iron-copper interaction and strong metal-support interaction, leading to outstanding redox behavior.

关键词: water gas shift     iron     copper     bimetallic catalysts     ceria     hydrogen    

Mechanistic understanding of Cu-based bimetallic catalysts

You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 689-748 doi: 10.1007/s11705-019-1902-4

摘要: Copper has received extensive attention in the field of catalysis due to its rich natural reserves, low cost, and superior catalytic performance. Herein, we reviewed two modification mechanisms of co-catalyst on the coordination environment change of Cu-based catalysts: (1) change the electronic orbitals and geometric structure of Cu without any catalytic functions; (2) act as an additional active site with a certain catalytic function, as well as their catalytic mechanism in major reactions, including the hydrogenation to alcohols, dehydrogenation of alcohols, water gas shift reaction, reduction of nitrogenous compounds, electrocatalysis and others. The influencing mechanisms of different types of auxiliary metals on the structure-activity relationship of Cu-based catalysts in these reactions were especially summarized and discussed. The mechanistic understanding can provide significant guidance for the design and controllable synthesis of novel Cu-based catalysts used in many industrial reactions.

关键词: copper     bimetallic catalyst     coordination     modification mechanism     catalytic application    

Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium

P. V. Korake, A. G. Gaikwad

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 215-226 doi: 10.1007/s11705-010-1012-9

摘要: The capturing process for carbon dioxide over porous solid adsorbents such as lithium silicate, lithium aluminate, and magnesium aluminate at pre- combustion temperatures was studied. Lithium silicate was prepared by the sol gel and solid fusion methods. The lithium silicate adsorbent was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and surface area. The capturing of carbon dioxide over lithium silicate, lithium aluminate, and magnesium aluminate was explored at different experimental conditions such as exposure time, temperature variation, and exposure carbon dioxide pressure. The capturing process for carbon dioxide was investigated over these adsorbents with variation of their metal mole ratios. The effect of the addition of (promoter) sodium, potassium, and cesium in the lithium silicate adsorbent was explored to investigate the variation of the capture of carbon dioxide over these adsorbents.

关键词: capturing CO2     lithium silicate     lithium aluminate     magnesium aluminate    

Development of barium@alginate adsorbents for sulfate removal in lithium refining

Lisa Xu, Kaifei Chen, George Q. Chen, Sandra E. Kentish, Gang (Kevin) Li

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 198-207 doi: 10.1007/s11705-020-1968-z

摘要: The demand for lithium has been steadily growing in recent years due to the boom of electric cars. High purity lithium is commonly used in the manufacture of battery grade lithium electrolyte. Sulfate residuals originating from acid leaching of lithium ores must be limited to below 20 mg·L during refining. There are methods to remove sulfate such as membrane processing and chemical precipitation using barium salts. However, membrane separation is unable to achieve the required purity while chemical precipitation often causes secondary contamination with barium and requires extra filtration processes that lead to increased processing costs. In this study, we developed a polymeric matrix entrapped with barium ions as a novel adsorbent to selectively adsorb sulfate in aqueous solutions. The adsorbent was prepared by dropwise injection method where alginate droplets were crosslinked with barium to form hydrogel microcapsules. In a typical scenario, the microcapsules had a diameter of 3 mm and contained 5 wt-% alginate. The microcapsules could successfully reduce sulfate concentration in a solution from 100 to 16 mg·L , exceeding the removal target. However, the microcapsules were mechanically unstable in the presence of an excess amount of sulfate. Hence, calcium ions were added as a secondary crosslinking agent to improve the integrity of the microcapsules. The two-step Ca/Ba@alginate microcapsules showed an exceptional adsorption performance, reducing the sulfate concentration to as low as 0.02 mg·L . Since the sulfate selective microcapsules can be easily removed from the aqueous system and do not result in secondary barium contamination, these Ca/Ba@alginate adsorbents will find applications in ultra-refining of lithium in industry.

关键词: barium@alginate     microcapsules     dropwise injection     sulfate removal     lithium    

The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous

Min Song, Wei Zhang, Yongsheng Chen, Jinming Luo, John C. Crittenden

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 328-337 doi: 10.1007/s11705-017-1646-y

摘要: Two types of lignin-based carbon fibers were prepared by electrospinning method. The first was activated with Fe O (LCF-Fe), and the second was not activated with Fe O (LCF). Gas phase adsorption isotherms for toluene on LCF-Fe and LCF were studied. The gas phase adsorption isotherm for 0% RH showed LCF-Fe have about 439 mg/g adsorption capacity which was close to that of commercially available activated carbon (500 mg/g). The Dubinin-Radushkevich equation described the isotherm data very well. Competitive adsorption isotherms between water vapor and toluene were measured for their RH from 0 to 80%. The effect of humidity on toluene gas-phase adsorption was predicted by using the Okazaki et al. model. In addition, a constant pattern homogeneous surface diffusion model (CPHSDM) was used to predict the toluene breakthrough curve of continuous flow-packed columns containing LCF-Fe, and its capacity was 412 mg/g. Our study, which included material characterization, adsorption isotherms, kinetics, the impact of humidity and fixed bed performance modeling, demonstrated the suitability of lignin-based carbon fiber for volatile organic compound removal from gas streams.

关键词: lignin     carbon fiber     electrospinning     toluene     humidity    

A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells

Shu-Hong LI, Yue ZHAO, Jian CHU, Wen-Wei LI, Han-Qing YU, Gang LIU, Yang-Chao TIAN

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 388-394 doi: 10.1007/s11783-012-0475-y

摘要: Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-fabricated gold wire array substrate were synthesized using an electrochemical deposition method for formic acid oxidation in fuel cells. The surface morphology and element components of the Pt-Bi/Au nanoparticles were characterized, and the catalytic activities of the three Pt-Bi/Au nanoparticle electrodes with different Pt/Bi ratios for formic acid oxidation were evaluated. It was found that Pt Bi /Au had a much higher catalytic activity than Pt Bi /Au and Pt Bi /Au, and Pt Bi /Au exhibited a current density of 2.7 mA·cm , which was 27-times greater than that of Pt/Au. The electro-catalytic activity of the Pt-Bi/Au electrode for formic acid oxidation increased with the increasing Bi content, suggesting that it would be possible to achieve an efficient formic acid oxidation on the low Pt-loading. Therefore, the Pt-Bi/Au electrode offers a promising catalyst with a high activity for direct oxidation of formic acid in fuel cells.

关键词: catalyst     electrochemical deposition     formic acid oxidation     fuel cell     gold wire array     microfabrication    

标题 作者 时间 类型 操作

Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive

期刊论文

Low-cost adsorbents for urban stormwater pollution control

Yang Deng

期刊论文

Preparation and characterization of EVAL hollow fiber membrane adsorbents filled with cation exchange

Fengli ZHANG, Yuzhong ZHANG, Hong LI, Guangfen LI,

期刊论文

Ni-Co bimetallic catalyst for CH

Xiaohong LI, Jun AI, Wenying LI, Dongxiong LI

期刊论文

Composite adsorbents of CaCl

Huashan LI, Xianbiao BU, Lingbao WANG, Zhenneng LU, Weibin MA

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG,Jian LU,Zhencheng XU,Yiliang HE,Bo ZHANG,Song JIN,Brian BOMAN

期刊论文

Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison

Kubra Ulucan-Altuntas, Eyup Debik

期刊论文

Beta-cyclodextrin adsorbents to remove water pollutants—a commentary

期刊论文

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

期刊论文

Mechanistic understanding of Cu-based bimetallic catalysts

You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang

期刊论文

Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium

P. V. Korake, A. G. Gaikwad

期刊论文

Development of barium@alginate adsorbents for sulfate removal in lithium refining

Lisa Xu, Kaifei Chen, George Q. Chen, Sandra E. Kentish, Gang (Kevin) Li

期刊论文

The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous

Min Song, Wei Zhang, Yongsheng Chen, Jinming Luo, John C. Crittenden

期刊论文

A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells

Shu-Hong LI, Yue ZHAO, Jian CHU, Wen-Wei LI, Han-Qing YU, Gang LIU, Yang-Chao TIAN

期刊论文